Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Pathog ; 16(1): 4, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243246

RESUMEN

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in adults. Various C. difficile strains circulate currently, associated with different outcomes and antibiotic resistance profiles. However, most studies still focus on the reference strain 630 that does not circulate anymore, partly due to the lack of immunological tools to study current clinically important C. difficile PCR ribotypes. The goal of this study was to generate monoclonal antibodies recognizing various epidemic ribotypes of C. difficile. To do so, we immunized mice expressing human variable antibody genes with the Low Molecular Weight (LMW) subunit of the surface layer protein SlpA from various C. difficile strains. Monoclonal antibodies purified from hybridomas bound LMW with high-affinity and whole bacteria from current C. difficile ribotypes with different cross-specificities. This first collection of anti-C. difficile mAbs represent valuable tools for basic and clinical research.

2.
J Biol Chem ; 298(1): 101290, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678315

RESUMEN

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Cricetinae , Electroforesis en Gel de Poliacrilamida , Humanos , Límite de Detección , Proteínas de la Nucleocápside/inmunología
3.
J Infect Dis ; 224(9): 1489-1499, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34282461

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Formación de Anticuerpos , Especificidad de Anticuerpos , COVID-19/epidemiología , Femenino , Francia/epidemiología , Humanos , Inmunoglobulina G/sangre , Cinética , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Adulto Joven
4.
Lancet Microbe ; 2(2): e60-e69, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33521709

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces an antibody response targeting multiple antigens that changes over time. This study aims to take advantage of this complexity to develop more accurate serological diagnostics. METHODS: A multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three non-coronavirus antigens. Antibodies were measured in serum samples collected up to 39 days after symptom onset from 215 adults in four French hospitals (53 patients and 162 health-care workers) with quantitative RT-PCR-confirmed SARS-CoV-2 infection, and negative control serum samples collected from healthy adult blood donors before the start of the SARS-CoV-2 epidemic (335 samples from France, Thailand, and Peru). Machine learning classifiers were trained with the multiplex data to classify individuals with previous SARS-CoV-2 infection, with the best classification performance displayed by a random forests algorithm. A Bayesian mathematical model of antibody kinetics informed by prior information from other coronaviruses was used to estimate time-varying antibody responses and assess the sensitivity and classification performance of serological diagnostics during the first year following symptom onset. A statistical estimator is presented that can provide estimates of seroprevalence in very low-transmission settings. FINDINGS: IgG antibody responses to trimeric spike protein (Stri) identified individuals with previous SARS-CoV-2 infection with 91·6% (95% CI 87·5-94·5) sensitivity and 99·1% (97·4-99·7) specificity. Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals with 98·8% (96·5-99·6) sensitivity and 99·3% (97·6-99·8) specificity. Informed by existing data from other coronaviruses, we estimate that 1 year after infection, a monoplex assay with optimal anti-Stri IgG cutoff has 88·7% (95% credible interval 63·4-97·4) sensitivity and that a four-antigen multiplex assay can increase sensitivity to 96·4% (80·9-100·0). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of seroprevalence levels less than 2%, below the false-positivity rate of many other assays. INTERPRETATION: Serological signatures based on antibody responses to multiple antigens can provide accurate and robust serological classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected more than 6 months ago and measuring seroprevalence in serological surveys in very low-transmission settings. FUNDING: European Research Council. Fondation pour la Recherche Médicale. Institut Pasteur Task Force COVID-19.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Antivirales , Teorema de Bayes , COVID-19/diagnóstico , Humanos , Inmunoglobulina G , Inmunoglobulina M , Aprendizaje Automático , SARS-CoV-2 , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
5.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33259646

RESUMEN

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Pandemias , Paris/epidemiología , Estudios Seroepidemiológicos , Factores de Tiempo
6.
Immunity ; 50(5): 1276-1288.e5, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30902637

RESUMEN

Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response-a "weaning reaction"-that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer later in life. Prevention of this pathological imprinting was associated with the generation of RORγt+ regulatory T cells, which required bacterial and dietary metabolites-short-chain fatty acids and retinoic acid. Thus, the weaning reaction to microbiota is required for immune ontogeny, the perturbation of which leads to increased susceptibility to immunopathologies later in life.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Linfocitos T Reguladores/inmunología , Destete , Animales , Animales Recién Nacidos/inmunología , Animales Recién Nacidos/microbiología , Ácidos Grasos Volátiles/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Tretinoina/metabolismo
7.
Eur J Immunol ; 48(8): 1271-1280, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29974461

RESUMEN

Natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were discovered more than 40 and 20 years ago, respectively. These two cell types were initially studied for their unique functions in the elimination of infected or transformed cells, and in the development of lymphoid tissues. It took an additional 10 years to realize that NK cells and LTi cells were members of a larger family of innate lymphoid cells (ILCs), whose phenotypes and functions mirror those of T cells. Many mouse models have since been developed to identify and isolate ILCs, map their developmental pathways and characterize their functions. Because of the similarity between ILCs and T cells, this exploration remains a challenge. In spite of this, a broad range of mouse models available to researchers has lead to significant progress in untangling the unique roles of ILCs early in defense, regulation of adaptive immunity and homeostasis. Here, we review these mouse models, and discuss their strengths and limitations.


Asunto(s)
Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Modelos Animales , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linaje de la Célula , Inmunidad Innata/inmunología , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...